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J. Phys. A: Math. Gen. 14 (1981) 2489-2502. Printed in Great Britain 

Goldstone modes and coexistence in isotropic N-vector 
models 

I D Lawrie 
Department of Physics, The University, Leeds, LS2 9JT, England 

Received 28 October 1980 

Abstract. Coexistence in the d-dimensional, isotropic, N-component 4~~ model is studied 
at first order in E = 4 - d, using a renormalisation technique similar to that appropriate for 
bicritical crossover. The central result is the identification of a zero-temperature fixed point 
controlling the Goldstone singularities, with coupling constant U * *  Cc E / ( N  - 1) + O(E*) ,  at 
which the transverse fields have canonical scaling dimensions. Both critical and Goldstone 
singularities are fully regularised by our renormalisation group, and a complete exponen- 
tiation of the equation of state is achieved. The leading behaviour of the correlation 
functions is also exhibited. 

1. Introduction 

The question of coexistence below the critical temperature, T,, of an isotropic N -  
component system has attracted considerable theoretical interest over the years (see 
e.g. BrCzin and Wallace 1973, Wallace and Zia 1975, Nelson 1976, BrCzin and 
Zinn-Justin 1976, Schafer and Horner 1978, and references given by these authors). 
Central to these investigations is the existence of ( N  - 1) massless Goldstone modes 
associated with fluctuations transverse to the direction of spontaneous ordering. As is 
well known, these spin-wave-like fluctuations induce infrared singularities for all 
T < T,: at the mean field level there is an infinite transverse susceptibility, and analysis 
of fluctuation corrections reveals, for spatial dimensionalities d < 4, singularities in 
other thermodynamic functions, notably the longitudinal correlation function, which is 
predicted to diverge as p-' for small wavevectors. 

In one sense, the most appropriate field theory models for studying this behaviour 
are the nonlinear c model (Brtzin and Zinn-Justin 1976) and its variants (see e.g. 
BrCzin and Wallace 1973), which focus attention directly on the transverse modes. 
Evidence from these sources indicates fairly conclusively that the Goldstone singulari- 
ties are governed by the canonical dimensions of the fluctuating fields. In particular, 
BrCzin and Zinn-Justin (1976) have identified a trivial, infrared stable fixed point of the 
renormalisation group which controls coexistence. The same analysis also yields, for 
N > 2 ,  a non-trivial fixed point, which is infrared unstable in the temperature variable, 
and controls the critical singularity. Thus, for this model, one has a scheme which 
correctly incorporates both critical and coexistence singularities, and may be applied in 
the whole critical region. A drawback of this scheme is that it is limited in practice to 
dimensionalities close to the lower critical dimensionality dl = 2. This means that 
Ising-like (N = 1) and XY-like ( N  = 2 )  systems must be treated as special cases (in 
particular, the Ising case has no Goldstone modes and dl = 1.) Furthermore, it is not 
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easy to see in detail the relation between this scheme and those based on the cP4 model 
which, according to general universality arguments, purports to describe the infrared 
behaviour of the same systems. Here, by contrast, one studies most easily dimen- 
sionalities near four, where the critical behaviour of the Ising and X Y  models and 
coexistence in the X Y  model exhibit no exceptional features. 

Attempts to incorporate Goldstone singularities into the E expansion about four 
dimensions have followed two routes. Firstly, one can obtain certain information about 
thermodynamic quantities by assuming canonical behaviour for the transverse modes 
and treating by hand those contributions to the perturbation series which are directly 
affected (Wallace and Zia 1975, Mazenko 1976). Secondly, exponentiations of the 
equation of state and the correlation functions have been obtained by Nelson (1976) 
and by Schafer and Horner (1978). These authors combine renormalisation group 
treatment of the critical singularity with resummation procedures of a partly conjectural 
nature for the Goldstone modes. The different resummations used in these two works 
give different results: that of Schafer and Horner would appear to be the more reliable. 
Such an exponentiation has also been achieved by Nicoll and Chang (1978, see also 
Nicolll980) by means of nonlinear solution of a rather general form of renormalisation 
group equation. In fact, their results are similar to those presented here. Their method 
bypasses any detailed consideration of the role played by the Goldstone modes (though 
this is by no means a deficiency). 

In the present work, we study coexistence in the cP4 model, using an E expansion 
about four dimensions. We exhibit a renormalisation scheme which explicitly takes 
account of both critical and Goldstone singularities, and thus yields an exponentiation 
of the equation of state which avoids those ambiguities which are not inherent in the E 

expansion. Our explicit first-order results do not seem to contain any essentially new 
information, though the technique we use and the results we obtain have the merit of 
relative simplicity. (The same claim, however, would no doubt be made by other 
authors for their favourite techniques!) The novel feature of our work is the 
identification of a zero-temperature fixed point which controls the coexistence 
behaviour. We believe that this result contributes to elucidating the presumed 
equivalence of the cP4 and nonlinear U models. In common with several earlier studies, 
we obtain an equation of state which is exact in the spherical model limit, N + CO. 

Our renormalisation scheme is based on the magnetisation-temperature phase 
diagram, in which the critical point appears as a kind of bicritical point; the boundaries 
of the coexistence region, at which the Goldstone singularities occur, then play a role 
analogous to that of the critical loci which terminate at a real bicritical point. This idea is 
implicit in several of the works we have cited, but does not seem to have been fully 
exploited. We can thus use a renormalisation prescription analogous to that introduced 
by Amit and Goldschmidt ( 3  978) to study bicritical crossover. This scheme is described 
in § 2. In § 3 we demonstrate the Gaussian character of the fixed point which controls 
the coexistence singularity, and in § 4 we use our extended renormalisation group to 
obtain to O ( E )  a fully exponentiated form of the equation of state, together with the 
longitudinal and transverse correlation functions. A proof that this scheme works is 
outlined in an Appendix. 

2. Renormalisation 

Our starting point is the usual O ( N )  symmetric Landau-Ginzburg-Wilson model, 
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defined by the Hamiltonian density 

W X )  = ~lv4012+~ro14012+ (1/4!)~014014, (2.1) 
where q50(x) is an N-component field, u0 may be taken as constant in the critical region, 
and ro may be identified as 

ro=roc(uo)+constant(T- Tc)/T. (2 .2)  
The critical behaviour of this model is most economically obtained by use of the 
minimal subtraction procedure of t'Hooft and Veltman (1972; see also Lawrie 1976, 
Amit 1978), whereby one defines renormalised quantities 4 ( x ) ,  t,  U" in such a way as to 
remove poles at E = 0 from the renormalised, one-particle-irreducible vertex functions 
r"), a r ( 2 ) / a p 2  and At one-loop order, the result is 

uo = K ~ U " { ~  + [ ( N  + 8)/6e]SC + O(U"')}, (2 .5)  
where K is an arbitrary parameter with the dimensions of inverse length, ensuring that 
toc(T- Tc) /T and U" are dimensionless, and S = 2 ~ " / ' / ( 2 ~ ) " ( 4 d  - l ) ! .  In view of (2 .3) ,  
we shall henceforth drop the distinction between bare and renormalised fields. 

Near the coexistence curve, this renormalisation is inadequate to exponentiate the 
singularities induced by the Goldstone modes. We achieve this exponentiation by an 
extension of (2.3)-(2.5) analogous to that introduced by Amit and Goldschmidt (1978) 
to study crossover effects near a bicritical point. In order to focus on behaviour at the 
coexistence curve, we first define new fields, ~ ( x )  and n(x), according to 

4 = [(T + ( 3 / ~ ~ ) l ' ~ m g ,  n ]  (2.6)  

where the transverse field n(x) has ( N -  1 )  components, and mo(rO, u0) is chosen so that 
(T has zero expectation value: it is proportional to the spontaneous magnetisation. One 
may identify 

(2 .7)  2 mo = - 2 r 0 + 2 A  

where the counterterm 

ensures both that U has zero expectation value and, via a Ward identity, that ?s remains 
massless to all orders of perturbation theory. Up to an unimportant constant, the 
Hamiltonian density now reads 

x= 5 ) v * r / 2 + 5 / V ~ ) 2 + t m ~ a 2 + ~ ( 3 U o ) 1 / 2 m o ( T 2 + ( T 2 ) U  

+ (1/4!)Uo(T2 +U2)2+iA(?r2 + U') i- ( ~ / U O ) ' / ~ ~ O A U .  (2.9) 

We now wish to define dimensionless renormalised parameters m and U in such a 
way that solution of the associated renormalisation group equation correctly exponen- 
tiates the Goldstone mode singularities. To motivate our prescription, consider the 
longitudinal two-point vertex function, r,, and define fuu by 

(2 .10)  r u u ( K 2 p 2 ;  m, U ,  K )  = K2m2fuu(p2; m, U), 
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where the wavevector p has been rendered dimensionless by extraction of a factor of K. 

We anticipate that solution of the renormalisation group equation will yield, in the limit 
p + 0, a relation of the form 

(2.11) 

where a = O ( E ) ,  b = 1 + O ( E )  and U** is a suitable fixed point value of U. Clearly, the 
exponent a will represent the singularity correctly, provided that fur on the right of 
(2.11) remains finite and non-zero in the limit m/pb + CO. To ensure this, we propose to 
define m and U in such a way that fuu(p2; m, U )  remains finite and non-zero when 
m + m ,  with p 2 # 0 .  In fact, as we show in the Appendix, one can ensure similar 
behaviour, at all orders of perturbation theory, for each of the functions 

(2.12) f u n  = K -dnm -n run, 
fT,,. = K-dn+zm-n rmmun, (2.13) 

associated with the correlations of n longitudinal and zero or two transverse fields at 
distinct points in space, where d, = d + n ( l  - i d )  is the canonical dimension of the 
vertex function. 

At the order of one-loop diagrams, which we consider explicitly, this renor- 
malisation allows us to obtain, for arbitrary magnetisation, the two-point correlation 
functions and, as a special case, the equation of state to order E .  At higher orders, a new 
wavefunction renormalisation, ensuring the finiteness of afuu/ap2 as m + CO, would 
presumably be required to complete the prescription. Specifically, then, we define U 
and m by requiring that fuu and fmmu contain no poles at E = 0, and remain finite when 
m + CO at fixed, non-zero wavevector, the latter condition being applied order by order 
in the double expansion in powers of U and E .  The calculation is very similar to that 
described in detail by Amit and Goldschmidt (1978), and we merely quote the results 

uo = K € u { ~  + [ ( N + 8 ) / 6 ~ ] S u  -$U In (a +m2)+O(u2)},  (2.14) 

m i  = ~ ~ m ' { l + [ ( N + 8 ) / 6 ~ ] S u  -$SU h(a +m2)+O(U2)}. (2.15) 

In these expressions, a is an arbitrary constant, since only the large-m behaviour is 
important for the coexistence singularity. However, for the purpose of studying the 
crossover to ordinary critical behaviour, the choice 

a = 3  (2.16) 

turns out to be particularly convenient and, as we shall see, facilitates a complete 
exponentiation of the equation of state at this order. 

The desired renormalisation group equation is obtained in the usual way, by 
applying to the vertex functions the differential operator 

a 
(2.17) 

where the derivative on the left is at fixed mO and u0. Using (2.12) and (2.13) and 
ignoring wavefunction renormalisation at this order, we obtain 

the A derivative arising from the rescaling of the wavevector in (2.10). Application of 
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the same operator to (2.14) and (2.15) gives the coefficients as 

N + 8  3 m2 

Y m = 2 -  

(2.19) 

(2.20) 

Finally, to study correlation functions away from the coexistence curve, one must 
add a magnetic field term, -Hu, to the Hamiltonian density. The new vertex functions 
are naturally expressed in terms of the dimensionless increment in magnetisation, 

AM = K ~ / ~ - ' ( u ) .  (2.21) 

They are given by 

rT-,i(pl . . . pn+r;  m, U, AM, K )  

" 1  = AM)kI'Th,r+k(p, , .  . p a + [ ,  0 . .  . 0; m, U ,  K )  
k = o  k. 

or 

(2.22) 

(2.23) 

Near the coexistence curve, (2.23) remains finite in the limit m + 00, with (m AM) fixed. 
Consequently, it is appropriate to write the new renormalisation group equation in 
terms of the parameter 

z = (&u)1'2mAM, 

in which the factor (u/12)'l2 ensures that the quantity 
/l. = (;m2)1/2+z(;m2)-'/2 

is proportional to the total magnetisation. One obtains 

-A-+ a W--ymm a 2 8  ~ - y . z - + d , + i - ~ l y m ) f , n , i ( * p i ; m ,  a u , z ) = O  
am a t  

(2.24) 

(2.25) 

(2.26) 

where, at this order, yz = ym. 

3. The coexistence fixed point 

In order to study the asymptotic coexistence singularity, we require an approximate 
solution of the renormalisation group equation (2.26) in the large-m limit. In this limit, 
inspection of (2.19) shows that there is an infrared stable fixed point 

SU"" = ~ E / ( N  - 1) + 0(c2) .  (3.1) 

Furthermore, the limit m + 00 corresponds to ro+ -00, and hence, via (2.2), to T = 0. At 
this coexistence fixed point, we obtain 

ym = yz =2--E. (3.2) 

Now, despite the apparently non-trivial value (3. l), the fixed point Hamiltonian is 
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essentially Gaussian in character, and therefore (3.2) should, in fact, be an exact result. 
To see this, observe that the functions f T l m f l ,  which remain finite in the limit of interest, 
are associated with correlations of the fields n ( x )  and 

s ( x )  = mc+(x). (3.3) 
If we ignore the distinction between renormalised and bare quantities (a step which is 
justified a posteriori by the Gaussian Hamiltonian we are about to obtain, and more 
directly by the discussion of the bare theory given in the Appendix), we may substitute 
(3.3) into the Hamiltonian (2.9) and take the limit m + 00 to obtain 

X = ~ I V n / 2 + ~ s 2 + ~ ( 3 ~ ) 1 ’ 2 / n ~ 2 s  + ( 1 / 4 ! ) ~ l n / ~  + $ A ~ v / ~ +  ( 3 / ~ ) ~ ” A s .  (3 -4) 

On shifting the longitudinal field according to 

F = s + $ ( 3 ~ ) ~ / ’ / n 1 ~ + ( 3 / u ) ~ ’ ~ A  

this becomes 

2 = constant + ;lvnl2 + &F’, 

which verifies our assertion. Finally, if we add to (3.4) a source term, -hs, for the 
longitudinal field, then (3.6) is modified by the addition of 

(3.7) 

Thus, below four dimensions, the leading singularities of longitudinal correlation 
functions are given by the correlations of the operator I n (x ) I2  (cf Wallace and Zia 
1975), whose scaling dimension in the Gaussian ensemble is canonical, and given by 
(3.2).  

A X =  (3 /u) ’ l2Ah - i h 2  + &~/3)”’h ln12. 

4. Thermodynamic functions in the critical region 

In § 2 we introduced renormalised parameters m and z appropriate for describing 
behaviour near the coexistence curve. We now wish to obtain expressions in scaling 
form for the longitudinal and transverse correlation functions and, as a special case of 
the latter, the equation of state, which also describe the critical singularities correctly. 
The critical behaviour is most naturally expressed in terms of the total magnetisation M, 
and the reduced temperature t, which was defined in (2.4) and is related to m by 

t = -im ’{ 1 + [i In m - ln(3 + m ‘ ) ]Su + O( U ’)}. (4.1) 

In order to interpolate between the two descriptions, we define new variables p and 
7 by (2.25) and 

The relation between p and A4 is found to be 

M 2  = p ’[ 1 - a In( 3 + m ’)SU + O( U ’)I, (4.3) 
1 2  and we see that 7 = -2m in the limit m +CO, while near the critical point, m = 0, the 

variables p and 7 are respectively proportional to M and t. The renormalisation group 
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equation now takes the form 

a a a 2 a  1 -A- + W- - y77- - yFp 7 + d, + I  - 51 y p )  f ,pUi  (bpi ; r, p, U )  = 0, 
a7 aP 

(4.4) 

This equation may be integrated in the usual way, to give the relation 
I 

fl,nu’(Api; T ,  p, ~ ) = h ~ ” + ’  (E) - fvnuI(Pi; ?, CZ, a )  (4.8) 

where the characteristic functions i i ( A ) ,  ? ( A )  and F(A) satisfy 

A a i i l a A  = w(a, f ) ,  (4.9) 
A a ? / a  = -y7(a,  a)?, 
A ag/aA = - t ~ ,  (a, ~ ) f i ,  

(4.10) 

(4.11) 

with the initial conditions ii (1) = U ,  f (  1) = T,  ii (1) = p. 
Before presenting our solutions of the characteristic equations, we note the follow- 

ing limiting cases as A + 0. 

T = O :  a = u * ,  ( ? I T )  2 A-’”, ( f i / p )  = A - @ / ” ,  (4.12) 

7 # 0 ,  N # 1: a =U**, ( F I T )  i=r (P /p) ’  Z A-(’-“), (4.13) 

7 # 0, N = 1: = uA -‘, (?/r)  2: (P /p) ’  =A-‘, (4.14) 

where 

(4.15) 

reproduce the standard fixed point coupling constant and critical exponents correct to 
order E .  Full solutions of (4.9)-(4.11) are difficult to obtain (cf Amit and Goldschmidt 
1978). However, one may verify that the expressions 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

obtained by moderately inspired guesswork, satisfy the characteristic equations up to 
corrections which can be regarded as O(E’),  and exhibit the required limiting 
behaviour. In order to simplify these solutions, we have taken two steps to eliminate 
inessential corrections to the leading scaling behaviour. Firstly, we have set the usual 
coupling constant 

(4.20) 

& / 2  -1  Q(t) =$(N+8)[1 + $ ( N -  1)(3-2t) ] , 

U” = U[I -&A ln(3 - 27) + 0(u2)], 
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defined by (2.5), equal to its critical fixed point value U*. Secondly, we have anticipated 
the scaling limit 7 - t + 0 and p -M + 0, and retained only the leading terms. For this 
reason, the solutions do not exactly satisfy the stated initial conditions. Note that at this 
order, the quantity inside the bracket (3 - 2t/A2)"/' may be adjusted by corrections of 
order E .  Such adjustments will not be indicated explicitly in what follows. Also, the 
values of A we require will always avoid the singularity at A.2 = 2t/3. 

We now apply these results to obtain the equation of state in the critical region from 
the Ward identity 

(4.21) 

in which the magnetic field H has been rendered dimensionless by extraction of the 
appropriate power of K .  Using (4.8) and the perturbation expansion to first order, we 
find 

H/A ' M  = f + ,i' + &(N - 1)Sii(? + ,i') ln(7 + ,i2) +$a(? + 3F') In (f + 3,i') 

H =Mf,,(O; 7, CL, U )  

-&(f + 3,i')  ln(3 - 2 3 ,  (4.22) 

the final term arising from our 7-dependent renormalisation scheme. Owing to our 
choice of a in (2.16), this equation may be completely exponentiated by choosing the 
free parameter A so that 

?+,i2= 1. (4.23) 

Then (4.22) reads 

A ' = HIM. (4.24) 

The equation of state is traditionally expressed in terms of the scaling variables 

y = HM-', x tM-l/P, (4.25) 

with 

(8 - 1)-l= +(2 - E )  + O(E2). 

Substitution of (4.24), (4.17) and (4.18) into (4.23) yields an implicit equation of state 
which to lowest order gives 

(4.26) y = A ' / M 2  = 1 + t / M 2  = 1 + x 

or 

h 2 / t  = 1 + l /x .  

Using this lowest-order result, the equation becomes 
( 3  + x ) ~ / 2  + 23~/(N+8) x ( 3  + X ) ( N + 2 ) ~ / 2 ( N + 8 )  

(4.27) 

(4.28) 

after some rearrangement, and rescaling of x by 238'(N+8) to ensure y = 0 when x = -1. 
This result incorporates in a single equation most of the previously established or 

conjectured features of the equation of state. Thus the Widom function 

f ( x )  = Y (4.29) 
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is analytic at x = 0, and has the E expansion 

E 
[3(3 + x )  ln(3 + x )  + (N - 1)(1 + x )  In(1 + x )  +3(ln 2)x]+ O(E'), 

2(N + 8) 
f(x) = 1 + x  + 

(4.30) 

which agrees with the result quoted by Wallace (1976) apart from a normalising factor. 
On the other hand, the quantity (1 + x )  has the expected form of a double expansion in 
powers of y and yl-"' near the coexistence curve x + -1, y + 0, with the non-analytic 
terms vanishing correctly in the Ising-like case N = 1. (The essential singularity 
expected for an Ising-like system (Langer 1967) is, of course, not detected by the E 

expansion.) The first two coefficients of this series have been obtained in the E 

expansion by Wallace and Zia (1975) and we recover their results to lowest order. In 
the spherical model limit N + 00, we have 

(4.31) 

in agreement with the exact result of Br6zin and Wallace (1973). The one defect of 
which we are aware is that the function g, defined by 

y = xYg(x-'P), (4.32) 

with y = p(S - l ) ,  is not manifestly analytic for large x ,  although the leading power of x 
is correct. The required analyticity, which is implicit in the renormalisation group 
equation (4.4), may be restored in various ways by parametric representations. One 
possibility, suggested by J Nicoll (private communication) in a slightly different form, is 
to replace (4.28) by the equation 

1 - E / 2  ( l + x ) = y  , 

K"+2'xKb =y['+(NL)(qE''] 
N + 8  N + 8  y 

where 

a =(Y-2p)/Y=E/2+O(E2), 

b = ( ~ - l ) / ~ = i [ ( N + 2 ) / ( N + 8 ) ] &  +O(E') ,  

c = (1 - 2@)/2@ = [3/(N + 8 ) ] ~  + O(E') ,  

(4.33) 

(4.34) 

(4.35) 

(4.36) 

and K is defined as the solution of 

K = 3K" +2'xKb. (4.37) 

This is equivalent to (4.28) at O ( E ) ,  and has the same analytic properties near x = -1 
and x = 0. For large x, however, one may write 

K = x Y K  (4.38) 

and it is then straightforward to show that and g are analytic in x-". With this 
modification, our result coincides with that of Nicoll and Chang (1978), and is 
essentially equivalent to that of Schafer and Horner (1978). 

The transverse correlation function, G,,(p) = I' , ,(p)-' ,  may be found in the same 
way, with the unremarkable result 

r , , (p )=M"a[p+q2+:Si i~~ 'ds  ln(l+s(1-s)q2) y +2s +O(e2)], (4.39) 
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where 

q = /p\M-"/P (4.40) 

and 

ii = ~ * ~ ( N + 8 ) ( 2 + y ) " ' ~ [ y " ' ~ + $ ( N - 1 ) ( 2 + ~ ) ~ / ~ ] - ~ .  (4.41) 

As expected (see e.g. Schafer and Horner 1978), I?,, is analytic at q = 0 for all y. The 
critical singularity r,, - /PI'-' is absent at this order in E .  A different technique (BrCzin 
et a1 1974) is required to exponentiate the remaining logarithm and obtain the correct 
non-leading behaviour at large q. 

The interesting behaviour of the longitudinal two-point function r, is conveniently 
exhibited by use of the Ward identity 

A r u m  = r U m - r T m  =Mr,,,(o, P, - P I .  (4.42) 

The infrared singularity of this quantity may be transferred into a prefactor by the 
regularising condition 

(4.43) @ 2 +?=1-p2/A2 

Arc&) = MY"P(q, y )[I + &F(q, y) + 0(~~)1, 

which now replaces (4.23). We obtain 

(4.44) 

where F is a lengthy and unilluminating function, while the prefactor P, which arises 
directly from the renormalisation group equation with (4.43), is given by 

P(q, y) = $(N + 8 ) ( y  + q2)"'2(2 + y +q2)'" 

x [(y + q 2 ) E / 2  + $(N - 1)(2 + y + q2)E'2]-1* (4.45) 

One sees that, for N # 1, the longitudinal susceptibility near the coexistence curve has 
the expected form 

/YL-P(o, y)-1-y-"'2 (4.46) 

as y + 0, and that for y = 0, 

r v u ( P ) - P ( q ,  0)-q" .  (4.47) 

For the Ising-like case, N = 1, this singularity is removed, and the susceptibility has a 
finite value at coexistence. 

5. Discussion 

We have sought to bring together a number of previously established or conjectured 
features of coexistence in the critical region of isotropic systems, by exhibiting for the 
first time a single renormalisation scheme for the d4 model which explicitly regularises 
both the critical and the Goldstone mode singularities. Our explicit results to first order 
in E are displayed in equations (4.28), (4.39) and (4.45) for the equation of state and the 
correlation functions. The new feature which emerges from our analysis is the existence 
of a zero-temperature fixed point, with the coupling constant 

(5 .1)  SU"" = ~ E / ( N -  1) +O(E' )  
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which controls the coexistence behaviour, and is infrared stable in the temperature 
variable. This result serves to confirm and clarify the assumed equivalence of the 44 
and nonlinear U models, by exposing the correspondence between their fixed point 
structures, under appropriate renormalisation groups. 

We illustrate this correspondence in a schematic manner suggested by an anony- 
mous referee. The constraint 1901 = constant which leads to the nonlinear U model may 
be applied by taking the limit uo+ CO, ro+ -CC with (uo/ro) fixed. For convenience, 
define 

(5 .2)  

(5.3) 

2 -1/2 r’ = -ro( 1 + r; + u o )  
u’=uo( l+ r ;+uo)  2 - t / 2  , 

, 

with ro and uo rendered dimensionless by extraction of appropriate powers of a lattice 
constant, say. The ( r ’ ,  U’) plane may be envisaged as in figure 1. The nonlinear (+ model 
lies on the unit circle, where the polar angle plays the role of temperature. The 
non-trivial fixed point of BrCzin and Zinn-Justin (1976) and the Wilson-Fisher fixed 
point of the ~ 7 5 ~  model, whose precise location depends on the details of the renor- 
malisation group considered, lie on an invariant trajectory corresponding to the critical 
temperature, which separates the ordered and disordered phases. Presumably, both 
these fixed points have the same critical exponents, although we are unable to 
demonstrate this within the approximation schemes which are currently available. As 
the dimensionality, d, approaches 2, the invariant trajectory moves, and the Wilson- 
Fisher fixed point should approach the unit circle. For N > 2, the two non-trivial fixed 
points will finally coincide with the coexistence fixed point at T = 0, the ordered region 
disappearing entirely. For N = 2, the situation is less clear. An interesting possibility is 
that, while the fixed point of the nonlinear U model remains at a finite temperature, the 

Figure 1. Conjectured renormalisation group trajectories in the (r’ ,  U‘) plane. Fixed points 
are denoted by G (Gaussian), WF (Wilson-Fisher), BZ (nonlinear o model: Brizin-Zinn- 
Justin), C (Coexistence: BrBzin-Zinn-Justin and this work). 
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Wilson-Fisher and coexistence fixed points coincide, the ordered region collapsing to a 
line of singularities occupying a segment of the unit circle. While this illustration is 
partly speculative, and figure 1 is probably meaningful only for theories with a finite 
momentum cut-off, the overall picture seems plausible, and the renormalisation group 
flows indicated in the figure are consistent with the known stability properties of the 
various fixed points. 

The divergence of (5.1) for the Ising-like case, N = 1, may be of some interest. It is 
apparent from our results that this divergence introduces no anomalous behaviour into 
the thermodynamic functions from which, indeed, the effects of Goldstone modes are 
reassuringly absent. It is possible, however, that the presence of this singularity in the 
renormalisation group structure may have some bearing on the method of analytic 
continuation to N = 0. While this limit has often been taken without obvious difficulty, 
some questions of interpretation, involving the presence of Goldstone modes, have 
recently been raised by Moore and Wilson (1980). 
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Appendix 

We wish to show that the rescaled vertex functions 

can be rendered finite and non-zero in the limit m + 00, provided their wavevector 
arguments are such that they are finite for finite m. For brevity, we refer to the 
corresponding property of the vertex functions themselves as 'm -finiteness'. Let us first 
prove the analogous property for the bare vertex functions f calculated from (2.9). 
These are free from ultraviolet divergences for d = 4 - E  < 4, with poles appearing at 
E = 0. That the rescaled functions remain non-zero as mo + CO is clear, since they 
contain classes of diagrams which are purely transverse, except for vertices of the form 
uki2mor2a, to which the external a legs are attached. Diagrams of this kind contain 
only an overall factor of mi.  A proof that they also remain finite for E > 0 will be 
outlined in the loopwise expansion by induction on the number of loops. We require 
the Ward identities (see e.g. Amit 1978) 

with 
the loopwise expansion. 

curve, we have 

= M, and purely numerical coefficients c,,, which hold order by order in 

Observe first that, since the transverse susceptibility is infinite on the coexistence 

by dimensional analysis, so that f,, is mo-finite. This property is also straightforward 
to check for all the functions f,. and f,,,. at the one-loop level. 
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Now consider the functions f u n ,  and assume that all the vertex functions appearing 
in (Al) are mo-finite at the level of L loops. Owing to the unbroken symmetry in the 
transverse fields, f u n  contains transverse propagators only in closed loops. Contribu- 
tions with L + 1 loops can therefore be decomposed as in figure 2, where diagrams in 
class ( a )  are purely longitudinal. In these diagrams, we rescale the integration momenta 
by a factor of mo, extracting an overall factor given by dimensional analysis as 

(A4) 4 - n - ( n - l t L ) c  mo 

r ,  = + 

Figure 2. Contributions to the bare longitudinal vertex functions with ( L  + 1) loops. 
Diagrams of class ( a )  are purely longitudinal. Those in class ( b )  contain at least one closed 
transverse loop, around which are arranged contributions to the indicated vertex functions 
with no more than L loops. 

In the large" limit, the external momenta now appear in the form pi/mo + 0, but since 
the longitudinal propagators are massive, no infrared divergences appear. We conclude 
that this contribution is mo-finite for all n > 2 and E > 0. This rescaling is inappropriate 
for the remaining diagrams which contain transverse propagators. However, these 
diagrams are composed entirely of vertex functions with no more than L loops which, by 
hypothesis, are mo-finite. Consequently, the functions f u n  are all mo-finite at the level 
of (L + 1) loops. One may now apply (A2) for successive values of n, to show that all the 
vertex functions f,,. are mo-finite at the level of (L + 1) loops, which completes the 
induction. 

Consider now a minimal subtraction scheme in which renormalised quantities U' and 
& are defined on the coexistence curve so that &/U'"*  in the renormalised Ward 
identities is proportional to the renormalised magnetisation. The wavefunction 
renormalisation factor cancels out of (A2), and one would like to conclude that the 
renormalised vertex functions, which differ from the bare ones only by & -independent 
factors, are also & -finite. The obstacle to this conclusion is that, according to (A4), the 
function f, is rendered mo-finite only by powers of mo which are of order E .  

Consequently, on expanding in powers of E and subtracting poles, the &-finiteness of 
r, is destroyed by powers of In 6. To overcome this, one need only define a new 
longitudinal mass, m, by subtracting also the appropriate powers of ln(a + m 2 ) ,  and a 
new coupling constant, U, to remove these logarithms from the renormalised version of 
(A2). This is equivalent to the scheme described in § 2. 

Finally, at the level of two or more loops, one sees that a similar problem arises for 
r,,, equation (A3), and is solved by means of an m-dependent wavefunction renor- 
malization factor. According to the discussion of 0 3, this should lead to an anomalous 
dimension exponent q** = 0 in the coexistence limit. 
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